系统版本:CENTOS6.5 2.6.32-431.el6.X86_64

1、安装JDK

我这里用的是64位机,要下载对应的64位的JDK,下载地址:http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk7-downloads-1880260-zhs.html,选择对应的JDK版本,解压JDK,然后配置环境变量

vi /etc/profile

export PATH  

export JAVA_HOME=/opt/jdk1.7  

export PATH=$PATH:$JAVA_HOME/bin  

source /etc/profile  

测试下JDK是否安装成功: java -version

java version "1.7.0_45"  

Java(TM) SE Runtime Environment (build 1.7.0_45-b18)  

Java HotSpot(TM) 64-Bit Server VM (build 24.45-b08, mixed mode)  

2、编译前的准备(maven)

maven官方下载地址,可以选择源码编码安装,这里就直接下载编译好的 就可以了

wget http://mirror.bit.edu.cn/apache/maven/maven-3/3.1.1/binaries/apache-maven-3.1.1-bin.zip  

解压文件后,同样在/etc/profie里配置环境变量

export PATH=/usr/local/maven/bin:$PATH

验证配置是否成功: mvn --version

Apache Maven 3.1.1 (0728685237757ffbf44136acec0402957f723d9a; 2013-09-17 23:22:22+0800)  

Maven home: /opt/maven3.1.1  

Java version: 1.7.0_45, vendor: Oracle Corporation  

Java home: /opt/jdk1.7/jre  

Default locale: en_US, platform encoding: UTF-8  

OS name: "linux", version: "2.6.32-358.el6.x86_64", arch: "amd64", family: "unix"  


3、编译hadoop(PS:期间碰到很多次read timeout,导致失败,每次都要clean后重编译,急死人了。。)

wget http://mirrors.cnnic.cn/apache/hadoop/common/hadoop-2.2.0/hadoop-2.2.0-src.tar.gz  

如果是你32bit的机器,可以直接下载官方已经编译好的包,64bit的机子跑编译好的包跑不了。

由于maven国外服务器可能连不上,先给maven配置一下国内镜像,在maven目录下:conf/settings.xml,在<mirrors></mirros>里添加,原本的不要动

<mirror>

<id>nexus-osc</id>

<mirrorOf>*</mirrorOf>

<name>Nexusosc</name>

<url>http://maven.oschina.net/content/groups/public/</url>

</mirror>


同样,在<profiles></profiles>内新添加

<profile>

<id>jdk-1.7</id>

<activation>

<jdk>1.7</jdk>

</activation>

<repositories>

<repository>

<id>nexus</id>

<name>local private nexus</name>

<url>http://maven.oschina.net/content/groups/public/</url>

<releases>

<enabled>true</enabled>

</releases>

<snapshots>

<enabled>false</enabled>

</snapshots>

</repository>

</repositories>

<pluginRepositories>

<pluginRepository>

<id>nexus</id>

<name>local private nexus</name>

<url>http://maven.oschina.net/content/groups/public/</url>

<releases>

<enabled>true</enabled>

</releases>

<snapshots>

<enabled>false</enabled>

</snapshots>

</pluginRepository>

</pluginRepositories>

</profile>

编译clean

cd hadoop2.2.0-src  

mvn clean install –DskipTests  


发现异常

[ERROR] Failed to execute goal org.apache.hadoop:hadoop-maven-plugins:2.2.0:protoc (compile-protoc) on project hadoop-common: org.apache.maven.plugin.MojoExecutionException: 'protoc --version' did not return a version -> [Help 1]  

[ERROR]  

[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.  

[ERROR] Re-run Maven using the -X switch to enable full debug logging.  

[ERROR]  

[ERROR] For more information about the errors and possible solutions, please read the following articles:  

[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException  

[ERROR]  

[ERROR] After correcting the problems, you can resume the build with the command  

[ERROR]   mvn <goals> -rf :hadoop-common  


hadoop2.2.0编译需要protoc2.5.0的支持,所以还要下载protoc,下载地址:https://code.google.com/p/protobuf/downloads/list,要下载2.5.0版本噢

对protoc进行编译安装前先要装几个依赖包:gcc,gcc-c++,make 如果已经安装的可以忽略

yum install gcc  

yum intall gcc-c++  

yum install make  

安装protoc

tar -xvf protobuf-2.5.0.tar.bz2  

cd protobuf-2.5.0  

./configure --prefix=/opt/protoc/  

make && make install  

安装完配置下环境变量,就不多说了,跟上面过程一样。

别急,还不要着急开始编译安装,不然又是各种错误,需要安装cmake,openssl-devel,ncurses-devel依赖

yum install cmake  

yum install openssl-devel  

yum install ncurses-devel  

如报以下错误请:

Patch :

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:2.5.1:testCompile (default-testCompile) on project hadoop-auth: Compilation failure: Compilation failure:[ERROR] /home/chuan/trunk/hadoop-common-project/hadoop-auth/src/test/java/org/apache/hadoop/security/authentication/client/AuthenticatorTestCase.java:[84,13] cannot access org.mortbay.component.AbstractLifeCycle[ERROR] class file for org.mortbay.component.AbstractLifeCycle not found


ok,现在可以进行编译了,

mvn package -Pdist,native -DskipTests -Dtar  

[INFO] ------------------------------------------------------------------------  

[INFO] Reactor Summary:  

[INFO]  

[INFO] Apache Hadoop Main ................................ SUCCESS [3.709s]  

[INFO] Apache Hadoop Project POM ......................... SUCCESS [2.229s]  

[INFO] Apache Hadoop Annotations ......................... SUCCESS [5.270s]  

[INFO] Apache Hadoop Assemblies .......................... SUCCESS [0.388s]  

[INFO] Apache Hadoop Project Dist POM .................... SUCCESS [3.485s]  

[INFO] Apache Hadoop Maven Plugins ....................... SUCCESS [8.655s]  

[INFO] Apache Hadoop Auth ................................ SUCCESS [7.782s]  

[INFO] Apache Hadoop Auth Examples ....................... SUCCESS [5.731s]  

[INFO] Apache Hadoop Common .............................. SUCCESS [1:52.476s]  

[INFO] Apache Hadoop NFS ................................. SUCCESS [9.935s]  

[INFO] Apache Hadoop Common Project ...................... SUCCESS [0.110s]  

[INFO] Apache Hadoop HDFS ................................ SUCCESS [1:58.347s]  

[INFO] Apache Hadoop HttpFS .............................. SUCCESS [26.915s]  

[INFO] Apache Hadoop HDFS BookKeeper Journal ............. SUCCESS [17.002s]  

[INFO] Apache Hadoop HDFS-NFS ............................ SUCCESS [5.292s]  

[INFO] Apache Hadoop HDFS Project ........................ SUCCESS [0.073s]  

[INFO] hadoop-yarn ....................................... SUCCESS [0.335s]  

[INFO] hadoop-yarn-api ................................... SUCCESS [54.478s]  

[INFO] hadoop-yarn-common ................................ SUCCESS [39.215s]  

[INFO] hadoop-yarn-server ................................ SUCCESS [0.241s]  

[INFO] hadoop-yarn-server-common ......................... SUCCESS [15.601s]  

[INFO] hadoop-yarn-server-nodemanager .................... SUCCESS [21.566s]  

[INFO] hadoop-yarn-server-web-proxy ...................... SUCCESS [4.754s]  

[INFO] hadoop-yarn-server-resourcemanager ................ SUCCESS [20.625s]  

[INFO] hadoop-yarn-server-tests .......................... SUCCESS [0.755s]  

[INFO] hadoop-yarn-client ................................ SUCCESS [6.748s]  

[INFO] hadoop-yarn-applications .......................... SUCCESS [0.155s]  

[INFO] hadoop-yarn-applications-distributedshell ......... SUCCESS [4.661s]  

[INFO] hadoop-mapreduce-client ........................... SUCCESS [0.160s]  

[INFO] hadoop-mapreduce-client-core ...................... SUCCESS [36.090s]  

[INFO] hadoop-yarn-applications-unmanaged-am-launcher .... SUCCESS [2.753s]  

[INFO] hadoop-yarn-site .................................. SUCCESS [0.151s]  

[INFO] hadoop-yarn-project ............................... SUCCESS [4.771s]  

[INFO] hadoop-mapreduce-client-common .................... SUCCESS [24.870s]  

[INFO] hadoop-mapreduce-client-shuffle ................... SUCCESS [3.812s]  

[INFO] hadoop-mapreduce-client-app ....................... SUCCESS [15.759s]  

[INFO] hadoop-mapreduce-client-hs ........................ SUCCESS [6.831s]  

[INFO] hadoop-mapreduce-client-jobclient ................. SUCCESS [8.126s]  

[INFO] hadoop-mapreduce-client-hs-plugins ................ SUCCESS [2.320s]  

[INFO] Apache Hadoop MapReduce Examples .................. SUCCESS [9.596s]  

[INFO] hadoop-mapreduce .................................. SUCCESS [3.905s]  

[INFO] Apache Hadoop MapReduce Streaming ................. SUCCESS [7.118s]  

[INFO] Apache Hadoop Distributed Copy .................... SUCCESS [11.651s]  

[INFO] Apache Hadoop Archives ............................ SUCCESS [2.671s]  

[INFO] Apache Hadoop Rumen ............................... SUCCESS [10.038s]  

[INFO] Apache Hadoop Gridmix ............................. SUCCESS [6.062s]  

[INFO] Apache Hadoop Data Join ........................... SUCCESS [4.104s]  

[INFO] Apache Hadoop Extras .............................. SUCCESS [4.210s]  

[INFO] Apache Hadoop Pipes ............................... SUCCESS [9.419s]  

[INFO] Apache Hadoop Tools Dist .......................... SUCCESS [2.306s]  

[INFO] Apache Hadoop Tools ............................... SUCCESS [0.037s]  

[INFO] Apache Hadoop Distribution ........................ SUCCESS [21.579s]  

[INFO] Apache Hadoop Client .............................. SUCCESS [7.299s]  

[INFO] Apache Hadoop Mini-Cluster ........................ SUCCESS [7.347s]  

[INFO] ------------------------------------------------------------------------  

[INFO] BUILD SUCCESS  

[INFO] ------------------------------------------------------------------------  

[INFO] Total time: 11:53.144s  

[INFO] Finished at: Fri Nov 22 16:58:32 CST 2013  

[INFO] Final Memory: 70M/239M  

[INFO] ------------------------------------------------------------------------  


直到看到上面的内容那就说明编译完成了。

编译后的路径在:hadoop-2.2.0-src/hadoop-dist/target/hadoop-2.2.0

[root@localhost bin]# ./hadoop version  

Hadoop 2.2.0  

Subversion Unknown -r Unknown  

Compiled by root on 2013-11-22T08:47Z  

Compiled with protoc 2.5.0  

From source with checksum 79e53ce7994d1628b240f09af91e1af4  

This command was run using /data/hadoop-2.2.0-src/hadoop-dist/target/hadoop-2.2.0/share/hadoop/common/hadoop-common-2.2.0.jar  


可以看出hadoop的版本

[root@localhost hadoop-2.2.0]# file lib//native/*  

lib//native/libhadoop.a:        current ar archive  

lib//native/libhadooppipes.a:   current ar archive  

lib//native/libhadoop.so:       symbolic link to `libhadoop.so.1.0.0'  

lib//native/libhadoop.so.1.0.0: <spanstyle="color:#ff0000;">ELF 64-bit LSB shared object, x86-64, version 1</span> (SYSV), dynamically linked, not stripped  

lib//native/libhadooputils.a:   current ar archive  

lib//native/libhdfs.a:          current ar archive  

lib//native/libhdfs.so:         symbolic link to `libhdfs.so.0.0.0'  

lib//native/libhdfs.so.0.0.0:   <spanstyle="color:#ff0000;">ELF 64-bit LSB shared object, x86-64, version 1</span> (SYSV), dynamically linked, not stripped  


注意红色字体部分,如果下载官网的编译好的包,这里显示的是32-bit。

5、部署集群准备

两台以上机器,修改hostname, ssh免登陆,关闭防火墙等

5.1、创建新用户

useradd hadoop  

su hadoop  

账户分配sudo的权限。

(切换到root账户,修改/etc/sudoers文件,增加:hadoop  ALL=(ALL) ALL )

5.2、修改主机名

vi /etc/sysconfig/network  

hostname master  

注销一下系统

[root@master ~]#  

变成master了,修改生效

5.3、修改hosts

vi /etc/hosts  

新增你的主机IP和HOSTNAME  

192.168.1.110  master  

192.168.1.111  slave1  

5.4、ssh免登陆

查看ssh

[root@localhost data]# rpm -qa|grep ssh  

libssh2-1.4.2-1.el6.x86_64  

openssh-5.3p1-84.1.el6.x86_64  

openssh-server-5.3p1-84.1.el6.x86_64  

缺少openssh-clients

yum install openssh-clients  

配置无密登录

[hadoop@master ~]$ cd /home/hadoop/  

[hadoop@master ~]$ ssh-keygen -t rsa  

一路回车

[hadoop@master ~]$ cd .ssh/  

[hadoop@master .ssh]$ cp id_rsa.pub authorized_keys  

[hadoop@master .ssh]$ chmod 600 authorized_keys  

把authorized_keys复制到其他要无密的机器上

  1. [hadoop@master .ssh]$ scp authorized_keys root@192.168.1.111:/home/hadoop/.ssh/  

记得这里是以要以root权限过去,不然会报权限错误

  1. [hadoop@master .ssh]$ ssh slave1

  2. Last login: Mon Nov 25 14:49:25 2013 from master  

  3. [hadoop@slave1 ~]$  

看到已经变成slave1了,说明成功鸟

6、开始集群配置工作

配置之前在要目录下创建三个目录,用来放hadooop文件和日志数据

[hadoop@master ~]$mkdir -p dfs/name  

[hadoop@master ~]$mkdir -p dfs/data  

[hadoop@master ~]$mkdir -p temp  

把之前编译成功的版本移到hadoop目录下,注意目录权限问题

配置hadoop环境变量:

export JAVA_HOME PATH CLASSPATH

export HADOOP_DEV_HOME=/home/hadoop-2.2.0

export PATH=$PATH:$HADOOP_DEV_HOME/bin

export PATH=$PATH:$HADOOP_DEV_HOME/sbin

export HADOOP_MAPARED_HOME=${HADOOP_DEV_HOME}

export HADOOP_COMMON_HOME=${HADOOP_DEV_HOME}

export HADOOP_HDFS_HOME=${HADOOP_DEV_HOME}

export YARN_HOME=${HADOOP_DEV_HOME}

export HADOOP_CONF_DIR=${HADOOP_DEV_HOME}/etc/hadoop

export HDFS_CONF_DIR=${HADOOP_DEV_HOME}/etc/hadoop

export YARN_CONF_DIR=${HADOOP_DEV_HOME}/etc/hadoop

export HADOOP_COMMON_LIB_NATIVE_LIB=$HADOOP_INSTALL/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

下面就开始配置文件

6.1  hadoop-env.sh

找到JAVA_HOME,把路径改为实际地址

6.2 yarn-env.sh

找到JAVA_HOME,把路径改为实际地址

6.3  slave

配置所有slave节点

将datanode主机名加入其中

6.4 core-site.xml

<property>

<name>fs.defaultFS</name>

<value>hdfs://master:9000</value>   //系统分布式URL  

</property>

<property>

<name>io.file.buffer.size</name>

<value>131072</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>file:/home/hadoop/temp</value>

</property>

<property>

<name>hadoop.proxyuser.hadoop.hosts</name>

<value>*</value>

</property>

<property>

<name>hadoop.proxyuser.hadoop.groups</name>

<value>*</value>

</property>

注意fs.defaultFS为2.2.0新的变量,代替旧的:fs.default.name

6.5、hdfs-site.xml

配置namenode、datanode的本地目录信息

<property>

<name>dfs.namenode.secondary.http-address</name>

<value>master:9001</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/usr/app/dfs/name</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/usr/app/dfs/data</value>

</property>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.webhdfs.enabled</name>

<value>true</value>

</property>

新的:dfs.namenode.name.dir,旧:dfs.name.dir,新:dfs.datanode.name.dir,旧:dfs.data.dir
dfs.replication确定 data block的副本数目,hadoop基于rackawareness(机架感知)默认复制3份分block,(同一个rack下两个,另一个rack下一 份,按照最短距离确定具体所需block, 一般很少采用跨机架数据块,除非某个机架down了)

6.6、mapred-site.xml

配置其使用 Yarn 框架执行 map-reduce 处理程序

这个地方需要把mapred-site.xml.template复制重新命名

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

<property>

<name>mapreduce.jobhistory.address</name>

<value>master:10020</value>

</property>

<property>

<name>mapreduce.jobhistory.webapp.address</name>

<value>master:19888</value>

</property>


新的计算框架取消了实体上的jobtracker, 故不需要再指定mapreduce.jobtracker.addres,而是要指定一种框架,这里选择yarn. 备注2:hadoop2.2.还支持第三方的计算框架,但没怎么关注过。
配置好以后将$HADOOP_HOME下的所有文件,包括hadoop目录分别copy到其它3个节点上。

6.7、yarn-site.xml

配置ResourceManager,NodeManager的通信端口,WEB监控端口等

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

<property>

<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

<property>

<name>yarn.resourcemanager.address</name>

<value>master:8032</value>

</property>

<property>

<name>yarn.resourcemanager.scheduler.address</name>

<value>master:8030</value>

</property>

<property>

<name>yarn.resourcemanager.resource-tracker.address</name>

<value>master:8031</value>

</property>

<property>

<name>yarn.resourcemanager.admin.address</name>

<value>master:8033</value>

</property>

<property>

<name>yarn.resourcemanager.webapp.address</name>

<value>master:8088</value>

</property>

<property>

<name>yarn.nodemanager.resource.memory-mb</name> //配置内存

</property>

把所有配置文件复制到其他的slave节点。

7、启动hadoop

这里你可以进行环境变量设置,不举例了

7.1、格式化namenode

[hadoop@master hadoop]$ cd /home/hadoop/hadoop-2.2.0/bin/  

[hadoop@master bin]$ ./hdfs namenode -format  

7.2、启动hdfs

[hadoop@master bin]$ cd ../sbin/  

[hadoop@master sbin]$ ./start-dfs.sh  

这时候在master中输入jps应该看到namenode和secondarynamenode服务启动,slave中看到datanode服务启动

7.3、启动yarn

[hadoop@master sbin]$ ./start-yarn.sh  

master中应该有ResourceManager服务,slave中应该有nodemanager服务

查看集群状态:./bin/hdfs dfsadmin –report
查看文件块组成:  ./bin/hdfsfsck / -files -blocks
查看各节点状态:    http://192.168.10.10:50070
查看resourcemanager上cluster运行状态:    http:// 192.168.10.11:8088
8、安装中要注意的事项

8.1、注意版本,机器是32bit还是64位

8.2、注意依赖包的安装

8.3、写配置文件注意”空格“,特别是从别的地方copy的时候

8.4、关闭所有节点的防火墙

如果有看到类似"no route to host"这样的异常,基本就是防火墙没关

记得关的时候要切换到root帐号

(1) 重启后永久性生效:  

开启:chkconfig iptables on  

关闭:chkconfig iptables off  

(2) 即时生效,重启后失效:  

开启:service iptables start  

关闭:service iptables stop  

8.5、开启datanode后自动关闭或者datanode无法启动请参考:

http://xiaofengge315.blog.51cto.com/405835/1392841

8.6 no datanode to stop

删除/tmp目录下的

adoop-daemon.sh代码,脚本是通过pid文件来停止hadoop服务的,而集群配置是使用的默认配置,pid文件位于/tmp目录下,对比/tmp目录下hadoop pid文件中的进程id和ps ax查出来的进程id,发现两个进程id不一致,终于找到了问题的根源。

赶紧去更新hadoop的配置吧!
修改hadoop-env.sh中的:HADOOP_PID_DIR = hadoop安装路径

9、运行测试例子

[hadoop@master bin]$ ./yarn jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar randomwriter /home/hadoop/dfs/input/  

这里要注意不要用 -jar,不然会报异常“Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/util/ProgramDriver”

[hadoop@master bin]$ ./yarn jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /home/hadoop/dfs/input/ /home/hadoop/dfs/output/  

在input下面新建两个文件

$mkdir /dfs/input %echo ‘hello,world’ >> input/file1.in  

$echo ‘hello, ruby’ >> input/file2.in  

./bin/hadoop fs -mkdir -p /home/hadoop/dfs/input  

./bin/hadoop fs –put /home/hadoop/dfs/input /home/hadoop/test/test_wordcount/in  

查看word count的计算结果:  

$bin/hadoop fs -cat /home/hadoop/test/test_wordcount/out/*  

hadoop 1  

hello  1  

ruby